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Upper and lower bounds are calculated for the nonrelativistic electronic ground state energy
of the !E} state of molecular hydrogen using the method of variance minimization with
Hylleraas-CI functions. In order to solve the occurring new integrals centered interparticle
coordinates were introduced.

1. Introduction

Since the basic work of Heitler and London [1] many authors have obtained
increasingly accurate upper bounds for the nonrelativistic electronic ground state
energy of the H, molecule, e.g. [2—4], within and beyond the Born—-Opperheimer
approximation. All these upper bounds were calculated using the Rayleigh—Ritz
variational principle. In order to test the accuracy of the obtained energy values
these values were compared with experimental data [5-8].

With the method of variance minimization [9-12] it is possible to calculate simul-
taneously upper and lower bounds for eigenvalues and hence exact error bounds
are available. This procedure was used successfully — spectroscopic accuracy was
achieved — for several states of the hydrogen molecule ion and its symmetric and
unsymmetric isotopes even in non-Born—Oppenheimer calculations [13,14]. In this
article we show that such calculations can also be expanded to four-body systems
like Hz.

Let H be a selfadjoint operator with a discrete spectrum op = {E;|Eo < E)
< E, ...} below the bottom of the continuum and domain Dg;. From Temple’s for-
mula[15]
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with E, <p< E,y; and (¥, LP)Z = 1, it can be seen [9-12] that a crucial point for the
determination of a good lower bound is the minimization of the variance

F[] = (HW, HO) — (HW, ¥)*. 2)
If a n-dimensional vectorspace ¥, is chosen with a basic {;} then ¥ is given by
n
U= Z Cii (3)
i=1

and the minimization of the variance F[¥] is equivalent [10-12] to the minimization

of the Rayleigh quotient

169 = 2w @
@,7)

As is shown in [9-12] the minimum value for F[¥] is obtained by an iteration proce-

dure for both A\* and .

R[N, 7] =

2. Hamiltonian and basic functions
2.1. EXPANSIONS FOR r,.;z

In addition to those matrices necessary for upper bounds calculations the calcu-
lation of error intervals demands the calculation of matrix elements HZ = (Hex,
Hey). This leads to new types of integrals containing particle interaction terms
down to the second negative power.

Their solution requires an expansion of the interaction terms ;2 in series of the
variables of integration. These expansions have to satisfy high requirements con-
cerning the speed and the stability of convergence, especially in view of the desired
high accuracy, which demands the calculation of a large number of integrals.

In this work two relations for r;z were used:

e theseries expansion derived by Steinborn and Filter [16],

J
1 1 & G—=I1-D @G+nun [r r<
— & (21 +1 cos 5
ETE 2@ -1) G+ D0\ ) Bilcos®)  6)
with ij, ... indicating that the summation over j proceeds in steps of two,

e andthe one by Liichow and Kleindienst [17],
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with
C‘II g\ and Cq’)\ m Cq,q—A—l ,
r2g+3
zéqz—_*_—z—cq»ov A=0A=¢g+1
Carip = 2 +3 2 €
P S C e < S ,
(29+3
A=0,A=g¢q
Qvo’ ? 3
1A = 4 Z :i 2 (8)
2052\ C 1 == G, <A<q-
k2q+2(cqv\+c,f\ 1 29 — 1Cq—1,A~l) , I<Agg-1,

(Coo = zand Cl 0= 3)
2.2. THE CHOICE OF THE COORDINATE SYSTEM

Highly accurate calculations of upper bounds for the electronic ground state of
molecular hydrogen like those published by Bishop and Cheung [3] or Kolos et al.
[4] were performed using basic functions in confocal elliptic coordinates.

These coordinates are suitable for H; and its isotopes but fail for H; because of
bad numeric properties of the expansion r;z inelliptic coordinates [18].

In order to apply the stable expansions (5) and (6) basic functions ¢;(1,2) were
chosen in interparticle coordinates,

$i(1,2) = &1%2"3?’%2"’1”23-0‘ Cartra) 9)

with one nucleus (A) at the centre of the coordinate system and the other at position
(0,0, R). Because of this the r4; are in the following denoted by ;.

The Born-Oppenheimer Hamiltonian (in atomic units) was used in the form
derived by Frost[19]:

2
semg iy L (B2 ) L(2,20)
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_r+rh-n & n+4r-n &

27‘1)‘12 67‘16?‘12 B 2?‘21‘12 67‘28"12
Tt ra = P -y &
21‘311'12 8r316r12 27'321’12 6?‘3267’12
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e —
ro r» re rgp ra R

2.3. CLASSIFICATION OF BASIS SETS

(10)

In analogy to Hylleraas-CI calculations performed on the Li-atom [20] the fol-

lowing classes of basis sets can be formed:

unlinkedbasis sets consisting of functions with only one correlation

term r}, or “pseudo’’-correlation term "3, )

first order linked basis sets consisting of functions not containing the expres-

sion rgirya;

second order linkedbasis sets consisting of functions containing the expression

rpir12; with the power of r5, even;
fully linked basis sets consisting of arbitrary functions.

The meaning of this classification is to avoid new and complicated integral
expressions in the calculation of the variance, esp. integrals, containing terms
(1/r%,)(1/r3,). Later it will be shown that these integrals do not occur if basis sets of
the unlinked or first order linked class are chosen. For second order linked basis

sets these integrals occur but can be solved with sufficient accuracy.

In order to reduce the dimension of the variational space an algorithm for the
selection of basic functions was designed in analogy to the process described by

Bishop and Cheung [3]:
A function ; is selected if

1. the power p; of rj; applies to 0 < p; < 3,
2. the powers k;, I;, m; and n; of r, r2, rg; and rp; apply to

k,--{—miga@,-] and l,-—{—n,-éa, aza&l,’]ENo,

ki+li+m;+n;<beNy,

3. and ki) li skmax, Mj, i < Mgy,

A basis sets {¢;} can then be characterized by the following notation:

class (a[0], a[1], a[2],a[3]/b);... m. -
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For the maximum values of a[p;], b, kmax and Mmax chosen within this work see
tables 2 and 3.

3. Integral solutions
3.1. INTEGRALS FOR UPPER BOUND CALCULATIONS

The determination of upper bounds for energy eigenvalues requires the calcula-
tion of matrix elements Hy; = (H¢;, ¢;) and Sy = (¢4, ¢;). They are linear combina-
tions of integrals of the form

L(k,1,m,n,p) = / P e 220 dr (11)

with boundary conditions

k,,mnp>=—1,

k+m>_27 l+n>_27 k,l,m,n?—Z—p,

resulting from the application of the Hamiltonian (10) on an arbitrary basic func-
tion ¢;.
Expressing din special coordinates,

dr= r%r% sind; sind, dgoldcpgdﬁldﬂzdrldrz ,

leadsto

00 oo pm opm p2r 2w
N
0 0 0 JO JoO 0

X sin191 Sin’l‘b d<p1d<p2d191d192dr1dr2 . (12)

This integral can be solved by expanding the terms r'g;, r, and 4, in a series expan-
sion derived by Perkins[21]:

L Ly
, g2k
= Pycosdy) Y Cogrsi gy % (v= - 1) (13)
= k=0
with

L= {g . mod(v,2) =0,
oo : mod(v,2) #0,
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g— qg: mod(v,2)=0
L=
mod(v,2) #0,

and

c _2q+1(u+2)ﬁ 2% +2—v
YT 2 \2k+1) Lok r2g — 2141
with T = min[g — 1 (V+1)/2]

Substituting the expression for rj; from eq. (13) into eq. (12) and integrating
with respect to the angular coordinates leads to

Ly Lp
(klmn,p)—l67r22 ZZZZC 21CnawCoap
q=0 2 +1) p=0 p=0 »=0

r
x { RM+n-2(q+,u+u) { / / r11c+2(‘1+#+P+1)r;+P+2(V—P+1) e—Za(r1+rz) dridr,
0
R (R k ‘2 1) 1+2 1
+ / / Pl ) L2k k) y2a(412) gy
0
oo pR
+ Rm+2(y—u)/ / rIIC+2(q+u+p+1)r12+p+n—2(q+u+p—l)e~2a(r1+rz) dr]drz
R roo
+ Rn+2(p—-u) / / rllc+p+m—2(q+u+p—1)r12+2(q+u+p+l)e—-2¢x(r1+r2) drydr,
o0 ra
+ R2g+pt) / / rllc+m+2(ﬂ—u+1)r12+n+p—2(4+u+p—l) o~ 2a(ri+m2) drydr,

+ /00 /OO r[]g+m+p—2(q+#+[3"1)r12+n+2(p—ll+l)e—2a(rl+r2} dr1dr2:| } . (14)
R

Solutions for the auxiliary integrals are given in the appendix.
Due to the following identities only three types of integrals have to be solved.

R n R R

Vi(ri,r) :/0 /0 F(ry,r) dridr, =/ / F(ry,r1) dridry = Via(ra,n),
0 r

(15)

00 R R 00
Vls(rl,rz)=/R /0 F(ri,r) drldr2=/ /R F(ry,r1) dridry = Vis(ra,n),
0
(16)
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o pr 00 poo
V15(r1,r2) = /R /; F(rl,rz) drldrz = ‘/R / F(rz,rl) drldrz = V16(r2,r1) .
r
(17)

3.2. INTEGRALS FOR THE MINIMIZATION OF THE VARIANCE

Performing calculations with the method of variance minimization leads to
new integral types in addition to those needed for upper bound calculations:

Integrals containing one factor r{; =2

L(k,l,m,n) //‘Hf;;l BZrz e~2elntm) gr.

integrals containing one factor ry 2

Lk, ,m,p) = /ljcrlr’gjrqzrz =2a(n+r) g (1,7 =1,2);
Bi

and integrals containing two interparticle coordinates to the second negative
power:

L(k,1,m) = /Hﬂ# 7232_ e gr (i =1,2).
Bj

3.2.1. Solution of integrals of type I
The solution of integrals of the form

1
ke tmyn) = [ Arir iy e o0 -
12

withk,I> -2, k+ 1> —2andm,n> — 1,k + [ + m+ n>0isachieved by expand-
ing rp;-terms in a series according to Perkins (eq. (13)) and for the rj; =2 term applying

eq. (6).
Integration with respect to the angular coordinates yields
12 (k7 l ym n)
o B >
= Dy gvDmyg,u Coa
g=0 (Zq + 1 v=0 p=0

r1+r2
ry—rnr
r1+r2
r—n

k+2+2(q—,\+p) 1+2(,\+u)+1 e 200+1) gy o

x Rm+n—2 (g+u+v) / /
Rn+2 p—v) / /

k+m—2(A+;t)+2 1+2(A+v)+l g—2a(rn+r) dridry
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+ Rm+2 (v—p) / /
+R2(q+p+u/ /

q

3

- Cia
A=0

R R
% ( RMHn=2(g+ity) / / r/if+2(q—)\+u)r;+2()\+v)+2e-20(rn+rz) drydr,

r1+r2

k 24+2(g—X I+n—2(g—A l -
- - +2+2(g +,u) +n (g=A+)+1 2a(r+r7) dridr,
1—n

rn+nr
ry —nr

k+m 2(/\+/.L)+2 l+n 2{g—A+v)+1 —2a(r;+r2) drldrp_)

R
4 RH2) / / * peem=20) H2O4)42,-20(147) g iy
0

R
+Rm+2(u—u) /00/ rllc“"z(‘I‘)\'*‘l-‘)r12+”“2(‘1")\+l’—l)e—Za(rH-rz) dridr,
R

+ R2(Q+#+V) /00 /00 rllc+m—2(/\+/i)r12+n—2(q—A+V—1)e—ZQ(rl-}—rz) drl drz)jl } (19)
R R

with

e D,,, : coefficients of the expansion by Perkins

o C,», Cl'], , © coefficients of the expansion by Liichow;

e P,(cos?) : Legendre polynomials;

e Ly, Ly, Ly : boundary conditions of summation (see eq. (13)).

3.2.2. Solution of integrals of type I
Integrals of the type

I3(ka lan)p) - 13(l7k)n)p)

= [ Attt ar
Bl

=/'11’chrzi')§1'fze_za(n+r2) dr (20)
:7)

withn, p> — 1canbesolved in analogyto 1.
With the expansions of Perkins and Liichow and the notationin eq. (19) integra-
tion with respect to the angular coordinates leads to
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L 1672 Ly Ly q
13 (k7 l’ n’p) Z 2 Z Z ngq,v 1q$“{ Z C ))‘ [RZ(/\-‘-V)—I
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[
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R
+ Rn—2(q+u—A) ( / /’2 r1;+2(q+,u—)\)r12+p+2(u—u+1)e_za(rl+r2) dridrs
0 Jo

R
N / / i rl}c+p—2(u+/\)r;+2(q+”+““)e”z"("+'2) drydr 2)} } : 1)
0 r

3.2.3. Solution of integrals of type I

Integrals containing products rz?ri7 (with i =1,2) cannot be solved using

eq. (6) twice because this leads to auxiliary integrals which are divergent although

the total integral is finite.
This problem can be avoided by dividing the domain of integration into two

parts:
2w 27r 1 1
wetm = [ 07 A e e
+/00/oo /W/W/ZW/ZW'J('J"M _1__1__e-——2a(r1+r2) i
0 € 0 Jo JO 0 P2l ’232 r%z

=I41(k’ l,m) + 142(ka l’m) ’
dr =r?r2sind, sind, dpidprd91d¥2dradr (22)
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with e as small as possible.

For the first part eq. (6) can be used twice while for the second part the expansion
by Steinborn and Filter as well as the expansion by Liichow and Kleindienst is
used. The third term rj; with m> — 1 in both cases is treated by the ansatz of Per-
kins. Because of the symmetry of the integral I with respect to the electron coordi-
nates, it is sufficient to treat only one of the cases, e.g. r’% rz3ri2. (1-2)-interchange
leads to the other case, r,rz?ri7.

Tests proved € = 0.5 to be the smallest possible value; a calculation of certain
auxiliary integrals with even smaller values of e led to numerical instabilities.

Considering the expansion by Steinborn and Filter (eq. (5)) the advantage of
the basis sets of second order linked class in comparison to the fully linked basis set
becomes obvious

Expanding rz? according to eq. (5), r7 using eq. (6), rj, according to eq. (14)
and integrating w1th respect to the angular coordinates resultsin

2 16m 2d
141 (k, l, m) = renm— Dm,q,y
q=0 2q+1 ;

— NG+ N i
2(2 (J q)ll(])_}_(;_}_?; S {ZC‘L

e

g—1 oo € R
_ Z C A [) /0 r11€+2(q——)\+p) r£+1—q+2/\+2 e-2¢1(r;+r2) dr, dr;} (23)

A=0

rtn
rn—nr

k+2(q—>\+u)+l H—j g+22+1 —~2¢x(r;+r2) drzdr1

if only second order linked functions are used, because

for small e we have ry < R;
for even m there is no distinction of cases in the expansion by Perkins;
for even m the expansion finishes at g = m/2.

Hence the two main disadvantages of the Steinborn expansion can be avoided:

the series converges rapidly, because = <1;
the g-summation finishes exactly for g = m/2 and so the double infinite sum-
mation is removed.

Applying the expansion by Liichow and Kleindienst twice and performing the
integration of I; with respect to the angular coordinates leads to
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S

A=0 v=0

— q9 9q
I4z(k, I,m) = —e 4, C,)\C Rm_z(q"'\'“‘) -1
§<2q+1) ,,._-o mas\ 252

r»+ R
n

k+l+2(q+p—u) I+2(u—-)\) _2 +ry)
R r, (r+12) dpodr
ro —

"

g-1

q
— Z Z Cox C; va—Z(q—»\+u)—1
=0 v=0 '
o0 oo
X / / In|-2f—
0
-1 ¢

B IR
A=0 v=0
00 poo
X / / In
0 €
g-1 g—1

+ z Z ” Cl Rm-2 g—A+p)

A=0 »=0
[ k2 142
X / / rl+ (g+n _”)r2+ (v=2) p=2a(ri+n) drydr; | . (24)
0 €

Solutions for all occurring auxiliary integrals are given in the appendix.

r2+R

- +2(g+p—v) r1+2("—)\)+le—20(r1 +r2) drydr,
) —

2

r+nr

k42(g+p—v)+1_I4+2(v=2) —2a(ri+
r Ag+p—v) rg 20=X) g=2a(ri+n) drydry
rn—n

4. Notes on computation

All programs were written in FORTRAN 77 and carried out on a CONVEX
C210 vector computer using 64 bit arithmetics (REAL*8) for the integral routines.
The auxiliary integrals were determined with at least 12 significant digits. Starting
values for recursions were calculated numerically with the subroutine “CADRE”
[22] based on the Romberg algorithm. In order to improve the convergence of the
series for the determination of the total integrals (I; — I4) the method of non linear
convergence accelerators as described by Levin [23] was used.

Matrix eigenvalue computations were performed with a subroutine based on
the Wielandt algorithm as described in [24]. For larger basis sets computations had
to be performed with 128 bit arithmetics in order to avoid the occurring numerical
instabilities (see below).

5. Results of upper bound calculations

Unless otherwise stated, all calculations published here were performed for an
internuclear distance of R = 1.4 a.u.
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After performing tests with “complete” basis sets of the different classes *! it
became obvious that both unlinked and first order linked basis sets could not be
used to achieve results for upper bounds with spectroscopic accuracy. Table 1
shows some of the results for complete basis sets withn = 6 andn = 7.
Table 1

Upper bounds of the electronic ground state energy obtained by complete basis sets of different
classes.

Class n Dim Ey(R)

unlinked 6 120 —1.162 599 851 529
7 164 —1.162 628 780 295

firstorder linked 6 390 ~1.174 461 608 879
7 605 —1.174 471 815 471

second order linked 6 424 —1.174 467 901 176
7 655 —1.174 474 590 160

fully linked 6 440 —1.174 469 271 176
7 680 —1.174 475 189 053

The next step was to optimize the non-linear coefficient .. Calculating upper
bounds for medium sized basis sets of fully linked class for different values of « in
the interval 0.5 <« <2.0 produced the optimum value being a = 1.4, therefore all
calculations were carried out witha = 1.4,

The results in table 1 show that obviously a strategy for the selection of basis
functions is needed in order to achieve spectroscopic accuracy. Optimized basis sets
were constructed according to the method described by Bishop and Cheung [3]
because of the similarity between the structures of their basis sets and those used in
this work. Starting from a basis (6, 4, 5, 3/6)¢ ¢ the possible sum of the exponents
was raised successively. The results shown in tables 2 and 3 indicate that spectro-
scopic accuracy can be achieved.

Table2

Upper bounds for the ground state energy: second order linked basis sets.
Basis Dimension AR
(6,4,5,3/6)46 340 ~1.174 466 733
(6,4,5,3/7)g6 447 ~1.174 473 765
(6,4,5,3/8)6 559 ~1.174 474 709
(7,5,6,4/7);4 556 ~1.174 474 377
(7,5,6,4/8)1, 740 ~1.174 475 228
(7,5,6,4/9);4 906 ~1.174 475 433
(8,6,7,5/9)34 1131 ~1.174 475 467
(8,6,7,5/10)g5 1404 ~1.174 475 570
(8,6,7,5/12)g5 1863 ~1.174 475 652

#1 A basis set of the form class (1, n,n,n /n), , shallin this context be called “complete”.
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Table 3

Upper bounds for the ground state energy: fully linked basis sets.
Basis Dimension Ar
(6,4,5,3/6)¢¢ 353 ~1.174 468 866
(6,4,5,3/7)g6 463 —1.174 474 880
(6,4,5,3/8)g¢ 577 —1.174 475 352
(7,5,6,4/7);4 578 —1.174 475 146
(7,5,6,4/8);, 768 —1.174 475 590
(7,5,6,4/9);, 938 —1.174 475 604
(8,6,7,5/9)54 1173 —1.174 475 637
(8,6,7,5/10)g5 1453 —1.174 475 645
(8,6,7,5/12)5 1920 —1.174 475 663

A comparison to previous results underlines the quality of basis sets in confocal
elliptic coordinates (table 4).

Table4
Comparison of results of calculations performed with functions in confocal elliptic coordinates.
R=14au.

Authors Dimension Eya.u]
Koloset al. (1986) 249 —~1.174 475 668
Bishop, Cheung (1978) 249 —1.174 475 65
This work 1920 —1.174 475 663

6. Results of error interval calculations

Error intervals were calculated for the nonrelativistic electronic ground state of
molecular hydrogen. The internuclear distance was chosen R = 1.4 a.u.; the opti-
mum non-linear parameter a = 1.4 for upper bound calculation was used as well.
Using the method of variance minimization in connection with Temple’s formula
to calculate a lower bound for the ground state Ey a good lower bound p for the first
excited state Ej is required. A lower bound for E; can be obtained by performing
a minimization of the variance F. With an upper bound for E; as a starting value
for the iteration process this lower bound EJ can be obtained according to

Ef =X~ VF. (25)

With a second order linked basis set (7, 5,6,4/9), ; containing 938 functions we cal-
culated a lower bound for the first excited electronic state p = —0.7164458704,
which we used for the calculation of lower bounds for the ground state with
Temple’s formula. The determination of error intervals with spectroscopic accu-
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racy was performed with large basis sets of second order linked class. The selection
of basis sets followed the method described by Bishop and Cheung, which success-
fully had been adopted for upper bound calculations. Our calculations showed
that it was necessary to use basis sets with dimensions ~ 1000, which leads to
serious stability problems in the numerical solution of the matrix eigenvalue
problems. Hence all matrix elements had to be stored as REAL*16 variables with a
size of 128 bits instead of 64 bits (REAL*8). Table 5 shows the result of these
calculations.

Table 5

Upper, lower bounds and variances for the electronic ground state: second order linked basis sets.
Basis Dim. A E- F
(6,4,5,3/6)¢6 340 ~1.174 445 675 —1.175 007 900 2.574 989E-4
(6,4,5,3/T)g6 447 —1.174 447 211 —1.174 596 705 6.846 853E-5
(6,4,5, 3/8)6,6 559 —1.174 447 351 —1.174 534 182 3.976 877E-5
(7,5,6,4/7)74 556 —1.174 447 240 —1.174 558 320 5.087 462E-5
(8,6,7,5/8)34 869 —1.174 447 169 —1.174 487 634 1.853 305E-5
(8,6,7,5/9)3 1131 —1.174 433 835 —~1.174 458 385 1.124 374E-5

Calculations with larger basis sets were not performed because of numerical
instabilities in calculating the necessary Rayleigh quotients. E.g., the basis set
(8,6,7,5/9)g 4 produced a lower bound lying above the upper bound obtained by
the variation method. The reason for this is discussed below.

Combining the optimum result for a lower bound (basis set (8,6,7,5/8), 4) with
the best upper bound, which is supplied by the Ritz method the nonrelativistic elec-
tronic ground state 12; of molecular hydrogen can be determined to be

—1.174487634 < Ey < — 1.174475663
in atomic units, i.e. in spectroscopic units

38295.608 cm ™! < D®(H,) <38292.981 cm™! .
The error interval of 2.627 cm™! is about six times larger than the experimental
error published by McCormack and Eyler [8].
7. Examination of numerical instabilities

In this section the numerical instabilities in calculating Rayleigh quotients shall
be discussed briefly.

7.1. LOSS OF SIGNIFICANCE IN CALCULATING UPPER BOUNDS

The best upper bound Ar for an energy eigenvalue calculated with the Ray-
leigh—-Ritz method is given by
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N N
AR=R[F) =3 "> cgHy, [[P] =1
i=1 i=1
if we denote with ¢; the coefficients of the approximate normalized eigenfunction
of H.

As there are both positive and negative elements of summation a loss of signifi-
cance is due to addition errors (significant digits af the end of the mantissa get lost)
and by subtraction errors (significant digits at the beginning of the mantissa get
lost). While the latter is inevitable, accuracy loss by addition can be avoided (or at
least minimized) by using 128 bit arithmetics instead of 64 bit arithmetics, even if
the matrix elements were calculated using 64 bit arithmetics.

The inevitable loss in significance caused by subtraction errors can be quantified
by calculating the absolute value of the ratio of the largest term of the summation,
Shmax, to the result of summation R[¥]. Then the number L of significant digits lost
is at least the logarithm of this ratio:

Smax

R[]
In order to estimate the loss in significancy for large basis sets, L has been calcu-
lated for several fully linked and second order linked basis sets of the structure
(n,n,n,n/n), . Tables 6 and 7 show the results.

L2 log,

Table 6
Loss of significant digits in calculating expectation values for the energy: fully linked basis sets.
n Dim R[7] L
1 12 —1.058 686 435 664 81 0.202
2 36 —1.146 163 982 256 01 0.872
3 76 —1.169 605 199 036 09 1.45
4 152 —1.173 816 001 147 76 2.03
5 264 —1.174 403 573 114 74 2.75
6 440 —1.174 469 271 176 95 3.67
Table7

Loss of significant digits in calculating expectation values for the energy: second order linked basis
sets.

n Dim R[Y] L

1 12 —1.058 686 435 664 82 0.202
2 35 —1.146 149 397 807 68 0.846
3 74 —1.169 588 390 734 99 1.664
4 147 —1.173 809 676 411 96 2.384
5 255 —1.174 400 601 788 33 3.300
6 424 —1.174 467 901 227 39 4.620
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The extrapolation of these results leads to the conclusion that for calculations
with basis sets with a size of more than 1000 functions all integrals have to be calcu-
lated with a higher precision than REAL*8 can supply. As the use of REAL*16
arithmetics implies an enormous increase of CPU-time due to the impossibility of
vectorization, we had to dispense with calculations in REAL*16.

7.2. LOSS OF SIGNIFICANCE IN CALCULATING VARIANCES

With the definition of the variance
F? = (H?y - CH)?
it is obvious that a severe loss of significant digits has to be taken into account. A
minimization of the variance directly leads to (H?» ~ (H)>?. Hence the minimum
loss of significant digits L,,;, can be specified as
CH?)
Lyin = 10gIO F2 (26)

In order to achieve a variance of about 1078 (as an example), (H?) and {H)?
should have at least the first nine decimal digits in common because both expecta-
tion values for H, are in the range of (—1.17)> ~ 1.37. At least these nine decimal
digits are inevitably lost. Equation (26) yields a lower bound for the loss in signifi-
cance. Furthermore it has to be taken into account that digits are lost in calculating
the expectation values (H?) and {(H)?. They can be analysed as described for the
case of upper bound calculations. For several second order linked basis sets of the
structure (n,n,n,n/n), , the results are shownin table 8 and fig. 1.

decimal digits

10 1

B— anergy calculation ,.v‘A

8 < - A=" yariance calculation

12 356 74 147 255 424
basis size

Fig. 1. Loss of significance as function of the basis size.
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Table 8

Loss of significant digits in calculating expectation values for the variance: second order linked basis
sets.

n Dim R[¥] L

1 12 2.630 153 726 789 61E-1 0.073
2 35 1.510 821 155 888 62E-1 1.218
3 74 4,372 511 757 471 50E-2 2.873
4 147 9.381 090 363 740 53E-3 4.685
5 255 1.520 450 224 130 51E-3 6.685
6 424 2.020 075 947 345 43E-4 9.587

Appendix

A. Auxiliary integrals for upper bound calculations
For the integral
R ra
Vll (m7 n) = / / rllnrge—Za(rl +n) dr1 dl’z (27)
0o Jo
with
m>=0, nx=0,
integration by parts with respect to r leads to a stable recursion:
1 R
Vi(m,n) = —— ( / rrtrtle=dan gy 4 2a ¥ (m + 1, n)) . (28)
m+1 0

Initial values and single integrals are determined numerically with the CADRE
subroutine [22].
The auxiliary integral

R poo
V13(m,n) = A /R rzlnrnze—?.a(r|+r2) dl‘ldrz (29)

factorizes into single integrals which are solved with the CADRE subroutine
because no stable analytic solutions can be given for n <0.
Solving the auxiliary integral Vs,

[o¢] o0
Vie(m,n) = / / Prrie 22 i dry (30)
R rn
three cases have to be distinguished:

1.m=20,n=20
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With [25]

o _oa=nl
/ xX'e ¥ dx=e WZ']B"a—"_—k_*_—l', (31)
u k=0
we get the analytic solution

ml eteR I (n 4 k)1 K Rl(4a)

Vig(m,n) = (20) 2 2T £ K2k £ (32)
2.m<O0andm+n+120
With the substitution r; = xr,, dr; = radx, eq. (30)leads to
Vis(m,n) = /R ” /1 " et g=2a(149n gy (33)

Changing the sequence of integration and integrating according to (31) with respect
torpresultsin

" (44 1)1 R¥ oo

Vlé(m,n) = mnii—k €
; k! (20!) +n+2—k

oo x" —2aRx
X A W e dx . (34)

The remaining single integrals are solved numerically.

3 m<0andm4+n+1<0

Integration by parts with respect to r; leads to a stable recursion:

1 o0
Vig(m,n) = e (2aV16(m +1,n) — /R printlg=2en drz) (35)

with the initial values and single integrals determined numerically.

B. Auxiliary integrals for error interval calculations
B.1. AUXILIARY INTEGRALS FOR THE INTEGRAL 5,

Designating the auxiliary integrals according to the order of appearance with
Va1, ..., Vo, itcan be stated:

e Theintegrals V55 to V53 can be solved analogously to the integrals in part A.
e The integrals V5, and V>3 are identical as can be shown by changing the order
of integration.
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1) The integral V5,
R rR ry+nr
Va1 (m,n) = / / In r'l"r;e“z"(”“ﬂ dridr, (36)
6 Jo rn—n
can be solved by substituting
rp=tR, r=17R,
and then
=7y, wz—:&%dn t=l+xn
t+7 (1-x) 1-x
resulting in

Vzl(m»")=“2Rm+n+2{/ / In|x | <1+ m+27""+"+le'% drdx

k2 ;
/ / o (” i+2rm+"+‘e~%“:f drdx}

=— 2R”'+"+2{V211(M, n) + Vaia(m,n)} (37)

withm +n+ 1=0.
Repetitive integration by parts with respect to 7in V5 leads to

Vair(m, n) = 4aRkH /01n|x|__(1_+i)_m__e*%dx
211 2 m+n +p+2 (1— x)m+k+2 .
(38)
In analogy we get for V3,
V. ) Z 4 R)kH /llnlxl._(—l__x)_'.l_e-'% dx
212(m, 1 “ m+n+p+2 (1 4 )"+ ’
(39)

and for V5 (m,n)

Vai(m,n) = — 2R Z (4aR)* H

poar m+n+p+2

1 Y
+ Inlx|i——ﬁ—e'% dx} . (40)
+x
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The remaining single integrals are determined numerically.
2) The integral

sz(m,n)=/oR/:1

can be transformed into a stable recursion by substituting
(ayrp=tR, r=71R,

r+r
r —nr

rrrie” 22+ drydr,

(b)yt=x7, dt=7dx, x=t/T,

(41)

changing the order of integration, and integrating by parts with respect to 7, we

receive
Rm+n+2 oo 1+x
—_— In | —— | ™ —2aR(1+x) d
Vaa(m,n) m+n+2{/, ol X" X
- /mln‘ Lt x "2~ 20R(1E) gy
1 1 - X
2aR

Rmtn+3 (Vaa(m,n+1) + Vaa(m + l,n)} :

Initial values and single integrals are determined numerically.

(42)

3) The integral V»4(m, n) can be solved using a similar routine as had been estab-

lished for the solution of V5.
Performing the same substitutions we obtain

Vos(m,n) = /Roo /Roo
e [ /

and after interchanging the sequence of integration

Vaa(m,n) = R™2 (Vg1 (m,n) + Vasa(m, n))
with

Vaar(m,n) = R™H+2 / / l 1+x

1
Vaaz(m,n) = R™"+2 / / l tx
x 1—x

ri+nr
In

rrrse 24 gridr,
rn—n

1+x

,rm+n+le-2aR(1+x)T dxdr

,rm+n+le—2aR(1+x)’r dxdr .

xm7Jn+n+le—2aR(l+x)'r dxdr ,

(43)

(44)

(45)

(46)

(47)
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In the case of m 4+ n + 1 >0, these double integrals can be reduced to single inte-
grals usingeq. (31). This leads to

Rm+n+2 m-n+1 m+n+1 ]
Vasr(m,n) = (————)—

(zaR)m+n+2 — k'
o0 1+4+x xm
X 2 R k 1 —20:R(1+x) d
( o ) /1 n[ 1—x (1 +x)m+n+2—ke X (48)
and
Rmetnt2 m+n+1 (m+n + 1)!
V) = arp 2 H
1 + X x'm—k ~2aR(1 H
x (2aR)* / l e (4 dx (49)
Combining both,
1 m+n+1 (m+n+1), i
Vos(m,n) = 2aR
24(m, n) (2a)m+n+2 £ A (2aR)
1 —k
X / In Ltx X e~ 2aR(1+3) gy
0 1 —x (1 + x)m+n+2—k
1 1 + X x)n_k 2R 1
— (1..;.;
+/0 1n|1~x (1+x)m+n+2_ke ) dx | . (50)

Therefore only one type of single integrals has to be calculated numerically. In the
case of m +n+ 1<0 a double recursion can be developed. Integrating both V34,
and V>4, by parts with respect to 7 and combining the results:

Rm+n+2 2a
m-+n-+ 2 Rm+n+2

/ ! ’ 1+x
- Inj —|x
i} 1 — X
/ ! [ 1+x
— | ==
0 1—x
Due to the symmetry of the integrals, only Va4(my.x,n) are needed as starting

values but the singularity m = —n — 2 demands the calculation of V34(—n — 2,n)
for all nas well.

(Vaa(m,n+ 1) + Vaa(m + 1,n))

V24(man) =

—_— D 1
m=2,-20R(14Y) g

x 2 20R(14) dx} . (51)
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B.2. AUXILIARY INTEGRALS FOR THE INTEGRAL I;
1) Let V3, (m, n) be the integral

R
V31mn / / r1+

Changing the sequence of integration and integrating with respect to r; yields for
nz0

rrye= 2o dridr, . (52)

" n! 1

Vi(m,n) = ) ———r
k=0 k! (20) ok

R
X (Rke‘zaR / In n +er’”e‘2‘"‘ dry
0
+/R In :i +§ ’,,,+k —dar; dr) (53)

In case of n <0 integrating by parts with respect to r; leads to the recursion

1 R R
V31(m,n) T+l {2aV31(m,n +1) - R’““le”z"‘R/0 ln it lr’"e”z"‘" dr
— / 1n ry + R ’)1n+n+l e~—4ar1 drl} ) (54)
R rn—R

The single integrals and the necessary starting values V31 (m, fimg, ) (for all m) have
to be calculated numerically.

2) The integral

can be reduced to single integrals by interchanging the sequence of integration
and integrating with respect to r;:

n n_! 1
k! (20{)n+1_k

l'1+R

‘ rrrse () gridr, (55)

ng(m, n) =
k=0

o0
x { Rke~2R / In
R
— / In
R

rn+R

1 e~2on dr
ry —

n+ R +h+1 ,—dary
” _Ryr'l" e dr ¢ . (56)
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In case of m <0 this solution causes numerical instabilities due to the subtraction
procedure. In this case, the recursion

1 00
V32 (m, n) = m /R In
_ Rn+le—~2aR /00 In
R

3) For theintegral

Vis(m,n) = / /

the preceding routine cannot be applied. In this case only the recursion

1
V33(m n) + {Rn+l ——ZaR/
R
- / In
0

can be applied, because integration with respect to r, leads to numerical instabilities
due to subtraction errors.

n+R

')1n+n+1e—4ar1 dr1
ry —

r1+R

'rme—-Zom dr] +20V32(m n- 1)} (57)

can be used.

r1+R

!r’"r" e~ 22t gy dr, (58)

r1+R

I'Jn —2ary drl

r1+R

l’m+n+1 —2ar) drl + 2 V33(m n+ 1)} (59)

4) The integral V34

Via(m,n) / /

decomposes into two terms after interchanging the sequence of integration:

r1+R

lr’"r" e~2n+12) gp, dr, (60)

Via(m,n) = Vaar(m,n) + Viaa(m, n)

with

Va1 (m,n) = / /

R o0
Vaga(m,n) = / rie 2" dr, / In
0 R

r1+R

‘r’"r" ~2e1+n) dry dry (61)

and

r1+R

lr’"e_z"‘" dr, . (62)
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V34, factorizes, while for V341 a stable recursion can be derived:
1 R
n-+ 1 0

withm +n+ 120

R
f_l_+_R rrintle=ten de 4 2aVaa (m,n + 1)}

V341 (m’ n)

ry —

(63)

5) Similarly the integral V35(m,n) decomposes into two terms, one of which
(V3s1) factorizes, while the other can be solved analytically for n >0 and recursively
forn<0:

V3s(m,n) / / rrrae= 2+ dr dr, (64)
:/ / Prrie 2 drydry 4 / / rprye=2e ) drydry
0 R R r
= V351(m,n) + V352(m, n) . (65)

Solving theintegral V353 two cases have to be distinguished:

(a) n=0. Usingeq. (31)leads to the analytical solution

~4aR (m + k)1'nt% (4 R
Visa(m,n) = (20) m+n+22m+l Z 2k k! Z (%6)

(b) n<0. Integration by parts with respect to r, leads to an instable recursion
for V3s,. A stable recursion can be derived by integrating V35 by parts with respect
tory:

Vss(m,n) = {ZaV35(m,n+1)+ / pyintlg=dan: drz}. (67)
R

+1
6) Theintegrals V3¢ and V37 areidentical with Vg and Vy;.

7) The integral

Vsg(m,n) / / rrrie= 2+ gy dr, (68)

can be reduced to a sum of single integrals for m >0:

! 20)
V38(m1n) = (2;1;,"_{.1 ;( / '}z+k —dar; dr (69)

If m <0, integration by parts with respect to ry leads to a stable recursion:
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1 R
V3g(m,n) = m {2a Vg (m +1,n) — [) I"2"+"+le_4m2 drz} . (70)

Computing the starting values it proved to be profitable to perform the numerical
integrations on the following integral, which can be derived by substituting
ry = Xrj:

R %)
Vig(m,n) = /0 / Xt g2 dydp, (71)
1

R ,l
= / / x—m~2',5n+n+le—2a(l-l7")r2 dxdr; . (72)
0 Jo

Otherwise, the domain of integration would be too large, which causes serious con-
vergence problems.

B.3. AUXILIARY INTEGRALS FOR THE INTEGRAL Iy

Let the double integrals be denoted with ¥4, and V4, according to their order of
appearance.

Thus the former integral can be solved recursively after applying the already
familiar techniques — substituting r; = xr,, interchanging the sequence of integra-
tion and integrating by parts with respect to r,:

o0 €
Var(m,n) =/ / In|-t —i-rz e 22 g, dr)
o Jo ry—n

= / / n |12 rrrie= 2o+ g, dr, (73)
0 Jo n—n
€ o0
= / / In L+x Xt =2o(149n ddy) (74)
o Jo 1—x
© |1+x © mintl —2a(l4x)r
:/ In x* [ e 2 dry dx (75)
0 l-x 0
— 1 CJn+n+2€—2ae/ ln‘ 1 + X xme—2aex dx
m+n+2 0 1—x
+ 2ce(Vay (m+1,n)+ Vay(mn+ 1)):! (76)

withm >0, andn>0.

At this point the reason for the restriction of the parameter e can be understood.
The domain of the single integral in eq. (77) stretches from 0 to co. The integral is
finite, as the powers of x are compensated by the exponential-function. Now the
smaller we choose € the worse is the convergence of the exponential function. For
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constant x the functional value increases for decreasing values of e. This is a crucial
point in the numerical computation of the integrals, because functional values
have to be calculated explicitly. Increase beyond the largest internally producible
number (REAL*8: z,5,, ~ 103%%), yields a run time error and the integral cannot be

computed.
The second double integral factorizes:
V42(m n / / r’"r"e“zo‘ (n+n) drzdrl (77)
—2ar;
(2a m+1 / rhe " dr, (78)
withm>0,andn>0.

B.4. AUXILIARY INTEGRALS FOR THE INTEGRAL Iy,

Let the double integrals be denoted as Vs to Vsa.

The integral Vs; can neither be solved analytically nor by recursion, because
due to the logarithmic terms integration by parts induces new types of integrals. As
only a few integrals of this type are necessary (about 2000), they are computated
numerically. An efficient numerical computation requires several substitutions as
well as intersections of the domain of integration:

Vsi(m,n) / / ntr) g ntR Trye ) drydry (79)
r—n r2 —
/ / ‘ 14+ x rn+R ‘ xm',n+n+1 —~20(14x)ry drzdx (80)
1—x r; —
1+x| |y+R -
, mn+1 ,~20(1+x)y
) / / ll—x ]y_R’,{"y e dydx (81)
/ / ‘ 14 x Iy—{- Rll}nymHH ~2a(14x)y 1y
1+x y+ R +n+1 —-2‘1(1'4'“))’
/ / ll—x ly Rlxm+2ym dax (2

’y+R

- [eliE)

IxmyIn+n+l —20(14+x)y dydx
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y+R +n+1 = 2a(1+)y
// ]1~—x }y Rlxm+2ym dydx
14+x l~}~R 1 o
/ / l 1_ Rl ymnel g 210/ dydx
14+ x 1+R 1 1 Y
./ / 'lwx __R'xm+2ym+n+3e < dydx . (83)

For the integral Vs; substituting r; = xr, and interchanging the sequence of inte-
gration leads to the recursion

Vss(m,n) = / / :“_LZ Pree2e ) o, (84)
/ / il_{—x xm,.m+n+l —2a(1+x)rs drydx (85)

2a(V53(m n+ 1) -+ V53(m+ 1 n))

m+n+2
22 [T |1 X -2
— ™t ‘/ In|;— x"e % dx (86)
0 _
with
m+n+2>0.
The integrals Vs; and Vsq4 factorize:
V52 m n) / / o+ R ‘ r’"r"e‘z" n+n) drydry (87)
b r2 + R -3,
it In rje” " dr 88
(20:)'"4'1 / rn—R ? (88)
withm>0andn>0;
Vsa(m,n) = / / Prrie= 220+ g dpy (89)
= o [ (50)

withm >0, andn>0.
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