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Upper and lower bounds are calculated for the nonrelativistic electronic ground state energy 
of the 1 + Y.g state of  molecular hydrogen using the method of  variance minimization with 
Hylleraas-CI functions. In order to solve the occurring new integrals centered interparticle 
coordinates were introduced. 

1. Introduct ion  

Since the basic work of Heitler and London [1] many authors have obtained 
increasingly accurate upper bounds for the nonrelativistic electronic ground state 
energy of the HE molecule, e.g. [2-4], within and beyond the Born-Opperheimer 
approximation. All these upper bounds were calculated using the Rayleigh-Ritz 
variational principle. In order to test the accuracy of the obtained energy values 
these values were compared with experimental data [5-8]. 

With the method of variance minimization [9-12] it is possible to calculate simul- 
taneously upper and lower bounds for eigenvalues and hence exact error bounds 
are available. This procedure was used successfully - spectroscopic accuracy was 
achieved - for several states of the hydrogen molecule ion and its symmetric and 
unsymmetric isotopes even in non-Born-Oppenheimer calculations [13,14]. In this 
article we show that such calculations can also be expanded to four-body systems 
like HE. 

Let ~ be a selfadjoint operator with a discrete spectrum ~D = {EilEo<E1 
< E2. . .}  below the bottom of the continuum and domain Dx. From Temple's for- 
mula [15] 

p -  (~kv, O) ' (1) 
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with E, <~p<<.E,+l and 0P, ~p)2 = 1, it can be seen [9-12] that a crucial point for the 
determination of a good lower bound is the minimization of the variance 

F[k~] = (9£k~, J£~P) - (9£~P,~P) 2 . (2) 

I fa  n-dimensional vectorspace It',, is chosen with a basic {~oi} then ~ is given by 
n 

= c, o, (3) 
i=l 

and the minimization of the variance F[~P] is equivalent [10-12] to the minimization 
of the Rayleigh quotient 

R[A*,~] = II(~C- A*)~II: 
(g,, if,) (4) 

As is shown in [9-12] the minimum value for F[~] is obtained by an iteration proce- 
dure for both A* and ~. 

2. Hamiltonian and basic functions 

2.1. EXPANSIONS FOR r~72 

In addition to those matrices necessary for upper bounds calculations the calcu- 
lation of error intervals demands the calculation of matrix elements Hit = (SiqSk, 
~bt) .  This leads to new types of integrals containing particle interaction terms 
down to the second negative power. 

Their solution requires an expansion of the interaction terms r,72 in series of the 
variables of integration. These expansions have to satisfy high requirements con- 
cerning the speed and the stability of convergence, especially in view of the desired 
high accuracy, which demands the calculation of a large number of integrals. 

In this work two relations for r~72 were used: 

• the series expansion derived by Steinborn and Filter [16], 

1 1 ~ °° ( y 
7 = r _ T > ~ - ~ Z ( 2 ) ( 2 / + I ) ( j - / - 1 ) ! !  ( j+ l ) ! !  r< Pt(cosO) (5) 

t=0 j=l (j - l)!! (j + l + 1)!! \ r > ]  

with Y-~-~t (2) . . .  indicating that the summation overj  proceeds in steps of two, 
• and the one by Lfichow and Kleindienst [17], 

~ /  A~=0 q--I ) 
r i -]- rj q ~ q-2A-1 -q+2A-I -2A-2 

~ =  In r i - r j  V.q,Ar i rj - Z  CIq, Arq (q+2A Pq(cOs~9) 
tj q=v k A=0 

(6) 
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with 

Ctq, A t = C'q,q_)~ and Cq,;~ : Cq,q_A_l, 

2 q + 3  _ 
2--d-~ C~,o, 

Cq+l,;~ = 2 q + 3 /  
~ Cq'A + Cq,A-1 

2 q +  3 -1 
2 -~ -~  e'q,0, 

Cq+l':~ -'- 2q + 3 / 
2--q-q~ ~ q,A-Jr Cq,A-1 

(c0,0 = l a n d C  ' =3). 1,0 

2q ) 
2 q -  1 Cq-a,~-I , 

2q , ) 
2 q -  1 C'q-Z'x-1 ' 

A = O , A = q + I ,  

l ~ A ~ q ,  

A = O , A = q ,  

l ~ A ~ q - 1 ,  

(7) 

(8) 

2.2. THE CHOICE OF THE COORDINATE SYSTEM 

Highly accurate calculations of upper bounds for the electronic ground state of 
molecular hydrogen like those published by Bishop and Cheung [3] or Kolos et al. 
[4] were performed using basic functions in confocal elliptic coordinates. 

These coordinates are suitable for H + and its isotopes but fail for H2 because of 
bad numeric properties of the expansion r~ 2 in elliptic coordinates [18]. 

In order to apply the stable expansions (5) and (6) basic functions ¢i(1,2) were 
chosen in interparticle coordinates, 

..ki ~li Jnt ,.n~ ~ o--c~(rAl+rAz) 
¢i(1,2) = 're'A2' m' B2'12 ~ (9) 

with one nucleus (A) at the centre of the coordinate system and the other at position 
(0, 0, R). Because of this the rAi are in the following denoted by ri. 

The Born-Oppenheimer Hamiltonian (in atomic units) was used in the form 
derived by Frost [19]: 

x = 7 + v = - g  + -  - 
rl g +72 

2 -~ - 2 rs2 rB10-;-Sl + 

- r12 0~£  

2rl rm Orl Orm 2rars2 Or2Orm 
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r +d2-  X  +d2-d 
2rlr12 arlar12 2r2r12 ar2arl2 

2rBlr12 cgrBlcOrl2 2rff2r12 cOrlr2cgr12 
1 1 1 1 1 1 

r/r2 r12 R rl r2 FB1 
(10) 

2.3. CLASSIFICATION OF BASIS SETS 

In analogy to Hylleraas-CI calculations performed on the Li-atom [20] the fol- 
lowing classes of basis sets can be formed: 

unlinked basis sets 

f irst  order linkedbasis sets 

second order linked basis sets 

fully linkedbasis sets 

consisting of functions with only one correlation 
term ~2 or "pseudo"-correlation term r~B ,. 
consisting of functions not containing the expres- 
sion rBirl2; 
consisting of functions containing the expression 
rBirl2; with the power ofrs: even; 
consisting of arbitrary functions. 

The meaning of this classification is to avoid new and complicated integral 
expressions in the calculation of the variance, esp. integrals, containing terms 
(1 /4 i )  (1/~2). Later it will be shown that these integrals do not occur if basis sets of 
the unlinked or first order linked class are chosen. For second order linked basis 
sets these integrals occur but can be solved with sufficient accuracy. 

In order to reduce the dimension of the variational space an algorithm for the 
selection of basic functions was designed in analogy to the process described by 
Bishop and Cheung [3]: 

A function ~i is selected if 

1. the powerpi of r12 applies to 0 <~Pi <~ 3, 
2. the powers ki, li, mi and ni of rl, !"2, rsl and rB2 apply to 

ki+mi<~a[pi] and li+ni<~a, a=a[p i ]ENo,  

ki -q- li -t- mi + ni <~ b ~ N o  , 

3. and ki, li ~ kmax, mi, ni <~ mmax. 

A basis sets {q~i} can then be characterized by the following notation: 

class (a[0], a[1], a[2], a[3]/b)k .... m,~- 
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For the maximum values of a[pi], b, kmax and mmax chosen within this work see 
tables 2 and 3. 

3. Integral solutions 

3.1. INTEGRALS FOR UPPER BOUND CALCULATIONS 

The determination of upper bounds for energy eigenvalues requires the calcula- 
tion of matrix elements H 0 = ( ~ i ,  Oi) and S U = (~i, ~bj). They are linear combina- 
tions of integrals of the form 

I i ( k , l , m , n , p )  = f ~rt2~lrnm~2e-2~(r'+r2) dr (11) 

with boundary conditions 

k, l, m, n , p  >1 - 1, 

k + l >~ - l , m + n >~ - l , k + n >~ - l , l + m >~ - l , 

k + m > ~ - 2 ,  l + n > ~ - 2 ,  k , l , m , n > > . - 2 - p ,  

resulting from the application of the Hamiltonian (10) on an arbitrary basic func- 
tion ~bi. 

Expressing d~- in special coordinates, 

d'r = ~ sin01 sin02 d~old~o2dOldO2drldr2, 

leads to 

11 (k, l, m, n ,p )  --- [-- 'lrk+2~/+2rm'2 ' nl'~'n//2'12" "p °-2a(rl+r2) 
J0 dO JO dO 

x sin01 sin02 d~oldqo2dOldO2drldr2. (12) 

This integral can be solved by expanding the terms ~1, r"m and/~12 in a series expan- 
sion derived by Perkins [21]: 

L~ l-2 
r~j = Z Pq(COSLqij) Z ('...u,q,lc,,ij'~q+2k v-q-2k~Stj (v~> - 1) (13) 

q=0 k=0 

with 

L1 = ~ : m o d ( u ,  2) = 0 ,  

oo : m o d ( u , 2 )  ¢ O, 
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and 

/ / /  L2 = 2 -  q : m o d ( v , 2 )  = O , 

v + l  
2 : m o d ( v , 2 )  ~ 0 ,  

v + 2  2 k + l  t = o 2 k + 2 q - 2 t + l  

withr  = m i n [ q -  1,(u + 11/2]. 
Substituting the expression for r~ -I from eq. (13) into eq. (12) and integrating 

with respect to the angular coordinates leads to 
L1 /-21 L22 /.23 

I i ( k , l , m , n , p )  = 167r2 ~-'~ 1 
q=0 (2q + 112 ~p=0 ~/J--0 ~u=0 Cm'q'l~ Cn,q,v Cp,q,p 

× Rm+n-2(q+#+v) "lrk+2(q+#+P+l ) "2vI+p+2(v-p+I ) ,.°-2c~(rl +r2) drl dr2 

q_ f iR flRrk+p+2(~-P+l)rl+2(q+v+~r+l'e-2a(rl+r2)drldr2 ] 
dO Jr2 1 2 J 

-t- Rm+2(v-#) !f  "lrk+2(q+l~+P-I-1)rl+P+n-2(q+v+p-1)°-2a(rl+r2)'2 ,~ drl dr2 
,/0 

///; -t- Rn+2(/'t-v) "lrk+p+m-2(q+#+P-l)"l+2(q+v+p-F1)°-2a(rl+r2)'2 ,. drldr2 

-}-R2(q+lz+v)[fR~fRr2rk+m+2(P-I~+l)r~+n+p-2(q+v+p-l)e-2t~(rl+r2'drldr2 

q_ rk+m+p-2(q+l~+p - 1) J+n+2(p-v+ 1) e-2,~(r, +r=) dr 1 dr 2 ( 1 4) 1 "2 " 

Solutions for the auxiliary integrals are given in the appendix. 
Due to the following identities only three types of integrals have to be solved. 

Vll(r l ,r2)  = f ( r l , r 2 )  drldr2 = f ( r2 ,  rl) drldr2 = V12(r2, rl) , 
JO ,10 

(15) 

/)I //£ V13(rl, r2) = F(r l ,  rE) drldr2 = f(r2,  rl) drldr2 = V14(r2, r l ) ,  

(16/ 
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V15(rl , r2) = F(rl ,  r2) drldr2 : F(r2, rl ) drldr2 : V16(r2, rl ) . 

(17) 

3.2. INTEGRALS FOR THE MINIMIZATION OF THE VARIANCE 

Performing calculations with the method of variance minimization leads to 
new integral types in addition to those needed for upper bound calculations: 

Integrals containing one factor ri-2: 

I2 ( k, l , m, n ) = / ~ rl2r~Bl rnB2 ~--~2 e-  2a( rl +r2 ) d'r ; 

integrals containing one factor r~2: 

I3 (k, l, re,p) = f 
1 

"kv/'l'2' vmBj'12rp ~ o-2°t(rl+r2)~, d'r (i,j = 1,2) ; 

and integrals containing two interparticle coordinates to the second negative 
power: 

f . k . / ~  1 1 p-Ea(rl+r2) I4(k,l,m) = ]'l '2'Bi-'~---~--- d'r ( i , j=  1,2). 
d ' Bj '12 

3.2.1. Solution of  integrals of  type I2 
The solution of integrals of the form 

I2(k,l ,m,n) = f ~rl2r~BlrnB2 ~--~2e-2C~(r'+r2) d'r (18) 

withk, l~> - 2,k + l>~ - 2andm, n~> - 1,k + l + m + n > Ois achievedby expand- 
ing rsi-terms in a series according to Perkins (eq. (13)) and for the ri- ~ term applying 
eq. (6). 

Integration with respect to the angular coordinates yields 

I2(k, l, m, n) 

= ~ (2q + 1)2 ~=0 u=0 ~=0 

R R rl + r2 k+2+2(q-,~+#) l+2()~+v)+l -2a(rl+r2) 
Rm+n-2(q+l~+U'fo fO l n l r a _ r 2  × - -  r 1 r 2 e drldr2 

-t- R n+E(~-u) f i r  f l~  In rl + rE k+m-E(A+/z)+2 l+2(,~+v)+l -2a(rl+r2) r I r E e drldr2 
Jo JR I rl -- r2 
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with 

- -  r I r 2 e " " drldr 2 
I rl - r2 

) rl -- r2 k + m - 2 ( ) ~ + # ) + 2 1 + n - 2 ( q - A + u ) + l  2 a ( r l + r 2 )  +R2(q+/z+u)J~R JfR ln l rl + r-------~2 rl r2 e -  drldr2 

q 
-ZC'q,  

A-0 

x(Rm+n-2(q+#+V) fooRfoRrk+2(q-A+l~)r~+2(A+u)+2e-2a(rl+r2)drldr2 

+ Rn+2(~_u ) .k+m-2(A+#) l+2(A+u)+2 ^-2~(rl+r2) 
r 1 r 2 e drl dr2 

L fo + Rm+2(u-l~) [ k+2(q-A+tz) l+n-2(q-A+u-1)-2c~(rl+r2) r 1 r 2 e drl dr2 

; ;  )]} rk+m-2(A+Iz)rl+n-2(q-A+u-1)'~-2~(rl+r2) drldr2 (19) + R2(q+u+u) "1 "2 

• Dn,q,t, " coefficients of the expansion by Perkins 
• Cq,~, C'q,;~ • coefficients of the expansion by Lfichow; 
• Pq(cOs 0) " Legendre polynomials; 
• L1, L21, L22 " boundary conditions of summation (see eq. (13)). 

3.2.2. Solution o f  integrals o f  type 13 
Integrals of the type 

Ix(k, l, n,p)  =/3( l ,  k, n,p) 

= / ~ 4  1 ~ d e -2'~(~'+r=) s2 12 d r  

1 ~ d e -2c'(r'+r=) (20) 

with n,p  ~> - 1 can be solved in analogy to 12. 
With the expansions of Perkins and Lfichow and the notation in eq. (19) integra- 

tion with respect to the angular coordinates leads to 



I3(k, 

X 

+ 

+ 

+ 

+ 

+ 

+ 
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L~ 1 6 ~  r~ /122 ( q [ 
l,n,p) = y ~  ,2--y;,2.  Z Z Dn'q'uDp'q'#{ Z G,A LR2(X+u)-I 

q=O / q -t- l) v=O u=O [, ,~=0 

( f R ~ f o  r~ l n ~ r l + R  rk+2(q+u_~)+lrt+n+p_2(q+u+v-1)e_~(r,+r2)drldr21 2 

"1 "2 " drldr2 

/o I r l+" 
Ctq,A R2(A+") "lrk+2(q+#-A)'21+n+p-2(q+#+u- 11 ~°-~(r' +rz) drl dr2 

A=0 

/:/r: ) r~+p-2(u+x) /+"+2(u-~+l) e-2~(r'+r2) drldr2 

Rn-2(q+.- )q rlk+2(q+/z-,x) rl?p+2(v-u+ 1 ) e-2a(r, +r21 dr1 dr2 

/o S: )]} . k+p-2(#+A) l+2(q+u+#+l) ~-2a(rl+r2) rl "2 ~ drldr2 . (21) 

3.2.3. Solution of  integrals of type I4 
Integrals containing products r f r l ~  (with i = 1,2) cannot be solved using 

eq. (6) twice because this leads to auxiliary integrals which are divergent although 
the total integral is finite. 

This problem can be avoided by dividing the domain of integration into two 
parts: 

I4(k , l ,m)  = /2~r 27r ¢r~B1 e -2a(r'+r2) dT [ 1 1 

J O J O  ~B2~]2 

+.fOO°°~fee°°~Orr[~r[27r[2~r~r12rr~Bl~ le-2e~(r'+r2) dO dO 42 

= I41 (k, l,m) + I42(k, l ,m),  

~ = 4 4  sin 01 sin 02 d~oldqo2d01d02dr2drl (22) 
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with e as small as possible. 
For  the first part  eq. (6) can be used twice while for the second part  the expansion 

by Steinborn and Filter as well as the expansion by Liichow and Kleindienst is 
used. The third term r~s j with m t> - 1 in both cases is treated by the ansatz of  Per- 
kins. Because of  the symmetry of  the integral 14 with respect to the electron coordi- 
nates, it is sufficient to treat only one of the cases, e.g. ~lr~2r-~ 2. (1-2)-interchange 
leads to the other case, r~s2r~2r-{ 2. 

Tests proved e = 0.5 to be the smallest possible value; a calculation of  certain 
auxiliary integrals with even smaller values of  c led to numerical instabilities• 

Considering the expansion by Steinborn and Filter (eq. (5)) the advantage of  
the basis sets of  second order linked class in comparison to the fully linked basis set 
becomes obvious: 

Expanding r~ 2 according to eq. (5), ri -2 using eq. (6), ~1 according to eq. (14) 
and integrating with respect to the angular coordinates results in 

m m 

I41(k,l,m) ~-~-167r2- 2 q ----- ~ Dm,q,/~ 
2q + 1 ~=0 

oo q)!! ra-j-q-2~-2 X ~ (2) (] -- q - 1)!!(j + q 
J=q" (j q)~.l (] ~ q  ~ 1~'I "t R / ~A=0 Cq,A 

f e rl + r2 k+2(q-A+p)+lrl+j-q+2A+lo_2a(rl+r2 ) 
× 1  / In .7----~. "1 "2 drEdrl 

Jo do rl -- r2 

q-I oo ~ '~ 
-- ~-~C'q,;~fO fO -k+2(q-~+~)J+j-q+2;~+2~-2a(r'+r2)rl "2 ~ dr2drl 

A=o 

if only second order linked functions are used, because 

(23) 

• for small e we have r2 < R; 
• for even m there is no distinction of  cases in the expansion by Perkins; 
• for even m the expansion finishes at q = m/2. 

Hence the two main disadvantages of  the Steinborn expansion can be avoided: 

• r <  

the series converges rapidly, because 77 < 1; 
the q-summation finishes exactly for q = m/2  and so the double infinite sum- 
mat ion  is removed. 

Applying the expansion by Liichow and Kleindienst twice and performing the 
integration ofi42 with respect to the angular coordinates leads to 
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m m 

2 q / q q 
I42(k,l,m)= 167r2 E Dm,q,z(EECq3Cq, vRm-2(q-a+z)-I 

q=O (2q + 1) 2 /~=0 \ ~=0 v=o 

× f0~  f~ ~ In [ rl q-r2 I l n ~ r l  - r2 r2r2+R- R "lk+l+2(q+It-v)vt+2(v-A)°-2a(rl+r2)'2 "~ dr2drl 

q q-1 
-- E E Cq,A Cq,vR m-2(q-A+#)-I 

A=0 v=0 

f oo r2 -I- R rk+2(q+#_v),j+2(v_A)+l _2a(rl+r2) 
drEdrl 

q-1 q 
-- E E p '  t'~ Dm-2(q-~+#) ~ q,A "-'q,v-". 

A=0 v=0 

f oo fOOln  r i d - r 2  .k+2(q+#-~)+ l rl+2(v-A) p-2c~(rl +r2) dr2drl X Jo J~ It1 -r2 "1 "2 
q-1 q-I 

-1- E E C!q,A C!q,v Rm-2(q-A+#) 
A---O v=O 

X fO°°f  °°rk+2(q+Iz-v)rl-l-2(v-A)o-2a(rl-t-r2).l "2 ~ dr2drl) . 

for all occurring auxiliary integrals are given in the appendix. Solutions 

(24) 

4. Note s  on computat ion 

All programs were written in FORTRAN 77 and carried out on a CONVEX 
C210 vector computer using 64 bit arithmetics (REAL* 8) for the integral routines. 
The auxiliary integrals were determined with at least 12 significant digits. Starting 
values for recursions were calculated numerically with the subroutine " C A D R E "  
[22] based on the Romberg algorithm. In order to improve the convergence of the 
series for the determination of the total integrals (I1 - I4) the method of non linear 
convergence accelerators as described by Levin [23] was used. 

Matrix eigenvalue computations were performed with a subroutine based on 
the Wielandt algorithm as described in [24]. For larger basis sets computations had 
to be performed with 128 bit arithmetics in order to avoid the occurring numerical 
instabilities (see below). 

5. Results  o f  upper bound calculations 

Unless otherwise stated, all calculations published here were performed for an 
internuclear distance ofR = 1.4 a.u. 
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Afte r  pe r fo rming  tests wi th  " c o m p l e t e "  basis sets o f  the d i f ferent  classes #1 it 
became  obvious  tha t  bo th  unl inked  and  f i rs t  order l inked basis sets cou ld  n o t  be 
used  to achieve results for  upper  bounds  wi th  spectroscopic  accuracy .  Table  1 
shows some of  the results for  complete  basis sets wi th  n = 6 and  n --- 7. 

Table 1 
Upper bounds of the electronic ground state energy obtained by complete basis sets of different 
classes. 

Class n Dim Eo(R) 

unlinked 6 120 -1.162 599 851 529 
7 164 -1.162 628 780 295 

first order linked 6 390 - 1.174 461 608 879 
7 605 -1.174 471 815 471 

second order linked 6 424 - 1.174 467 901 176 
7 655 -1.174 474 590 160 

fullylinked 6 440 -1.174 469 271 176 
7 680 -1.174 475 189 053 

The  next  step was to opt imize the non- l inear  coeff icient  a .  Ca lcu la t ing  upper  
bounds  for  m e d i u m  sized basis sets o f  f u l l y  l inked class for  d i f ferent  values o f  a in 
the interval  0.5 ~< o~ ~< 2.0 p roduced  the o p t i m u m  value being a = 1.4, therefore  all 
ca lcula t ions  were carr ied ou t  wi th  a = 1.4. 

The results  in table 1 show tha t  obviously  a s t ra tegy for  the selection o f  basis 
func t ions  is needed in order  to achieve spectroscopic  accuracy.  Opt imized  basis sets 
were cons t ruc ted  according  to the m e t h o d  described by Bishop and  C h e u n g  [3] 
because o f  the s imilar i ty  be tween the s t ructures  o f  their  basis sets and  those  used  in 
this  work.  Star t ing  f rom a basis (6, 4, 5, 3/6)6,6 the possible sum o f  the exponents  
was ra ised successively. The results shown in tables 2 and  3 indicate  t ha t  spectro-  
scopic accuracy  can  be achieved. 

Table 2 
Upper bounds for the ground state energy: second order linkedbasis sets. 

Basis Dimension ~R 

(6, 4, 5, 3/6)6,6 340 -1.174 466 733 
(6, 4, 5, 3/7)6,6 447 -1.174 473 765 
(6, 4, 5, 3/8)6,6 559 -1.174 474 709 
(7, 5, 6, 4/7)7,7 556 -1.174 474 377 
(7, 5, 6, 4/8)7,7 740 -- 1.174 475 228 
(7, 5, 6,4/9)7,7 906 -1.174 475 433 
(8, 6, 7, 5/9)8,8 1131 -1.174 475 467 
(8, 6, 7, 5/10)8,s 1404 -1.174 475 570 
(8, 6, 7, 5/12)8,8 1863 -1.174 475 652 

#I A basis set of the form class (n, n, n, n/n)n ~ shall in this context be called "complete". 
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Table 3 
Upper bounds for the ground state energy:fully linked basis sets. 

151 

Basis Dimension An 

(6, 4, 5, 3/6)6,6 353 -1.174 468 866 
(6, 4, 5, 3/7)6,6 463 -1.174 474 880 
(6, 4, 5, 3/8)6,6 577 -1.174 475 352 
(7, 5, 6, 4/7)7,7 578 -1.174 475 146 
(7, 5, 6, 4/8)7,7 768 -1.174 475 590 
(7, 5, 6, 4/9)7,7 938 -1.174 475 604 
(8, 6, 7, 5/9)8,s 1173 -1.174 475 637 
(8, 6, 7, 5/10)8,8 1453 -1.174 475 645 
(8, 6, 7, 5/12)8,s 1920 -1.174 475 663 

A compar ison  to previous results underlines the quality of  basis sets in confocal  
elliptic coordinates  (table 4). 

Table 4 
Comparison of results of calculations performed with functions in confocal elliptic coordinates. 
R = 1.4 a.u. 

Authors Dimension E0[a.u.] 

Kolos et al. (1986) 249 - 1.174 475 668 
Bishop, Cheung (1978) 249 - 1.174 475 65 
This work 1920 -1.174 475 663 

6. R e s u l t s  o f  e r ro r  in terval  ca lcu la t ions  

Error  intervals were calculated for the nonrelativistic electronic ground state of  
molecular  hydrogen.  The internuclear distance was chosen R = 1.4 a.u.; the opti- 
m u m  non-linear parameter  a = 1.4 for upper bound  calculation was used as well. 
Using the method  of  variance minimization in connect ion with Temple 's  formula  
to calculate a lower bound  for the ground state E0 a good lower b o u n d  p for the first 
excited state E1 is required. A lower bound  for E1 can be obta ined by  performing 
a minimization of  the variance F. With an upper bound  for E1 as a starting value 
for the i teration process this lower bound E i- can be obtained according to 

ei-  = ~* - v ~ .  (25) 

Wi th  a second order l inked basis set (7, 5, 6, 4/9)7,7 containing 938 functions we cal- 
culated a lower bound  for the first excited electronic state p = -0 .7164458704,  
which we used for the calculation of  lower bounds  for the ground state with 
Temple 's  formula.  The determination of  error intervals with spectroscopic accu- 



152 A. Miiller, H. Kleindienst / Error bounds for ground state energy 

racy was performed with large basis sets of  second order l inked  class. The selection 
of  basis sets followed the method  described by Bishop and Cheung, which success- 
fully had been adopted for upper bound calculations. Our calculations showed 
that  it was necessary to use basis sets with dimensions ,-~ 1000, which leads to 
serious stability problems in the numerical  solution of  the matr ix  eigenvalue 
problems. Hence all matr ix elements had to be stored as REAL* 16 variables with a 
size of  128 bits instead of  64 bits (REAL*8).  Table 5 shows the result of  these 
calculations. 

Table 5 
Upper, lower bounds and variances for the electronic ground state: second order linkedbasis sets. 

Basis Dim. A* E- F 

(6, 4, 5, 3/6)6,6 340 -1.174 445 675 -1.175 007 900 2.574 989E-4 
(6, 4, 5, 3/7)6,6 447 -1.174 447 211 -1.174 596 705 6.846 853E-5 
(6, 4, 5, 3/8)6,6 559 -1.174 447 351 -1.174 534 182 3.976 877E-5 
(7, 5, 6, 4/7)7,7 556 --1.174 447 240 - 1.174 558 320 5.087 462E-5 
(8, 6, 7, 5/8)8,8 869 -1.174 447 169 -1.174 487 634 1.853 305E-5 
(8, 6, 7, 5/9)8,8 1131 -1.174 433 835 -1.174 458 385 1.124 374E-5 

Calculations with larger basis sets were not  performed because of  numerical  
instabilities in calculating the necessary Rayleigh quotients. E.g., the basis set 
(8, 6, 7, 5/9)8,8 produced a lower bound lying above the upper bound obtained by 
the variat ion method.  The reason for this is discussed below. 

Combining the opt imum result for a lower bound (basis set (8, 6, 7, 5/8)8,8 ) with 
the best upper bound, which is supplied by the Ritz method  the nonrelativistic elec- 
tronic ground state x E+ of  molecular  hydrogen can be determined to be 

-1.174487634~<E0 ~< - 1.174475663 

in atomic units, i.e. in spectroscopic units 

38295.608 cm-1 ~< D ~  (H2) ~< 38292.981 cm-  1. 

The error  interval of  2.627 cm -1 is about  six times larger than the experimental  
error  published by McCormack  and Eyler [8]. 

7. E x a m i n a t i o n  o f  n u m e r i c a l  instabilit ies 

In this section the numerical  instabilities in calculating Rayleigh quotients shall 
be discussed briefly. 

7.1. LOSS OF SIGNIFICANCE IN CALCULATING UPPER BOUNDS 

The best upper bound AR for an energy eigenvalue calculated with the Ray-  
leigh-Ritz  me thod  is given by 
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N N 

AR = R[~] = Z Z cicjHij, I1 11 = 1 
i=1 i=1 

if we denote with c/the coefficients of the approximate normalized eigenfunction 
o f~ .  

As there are both positive and negative elements of summation a loss of signifi- 
cance is due to addition errors (significant digits at the end of the mantissa get lost) 
and by subtraction errors (significant digits at the beginning of the mantissa get 
lost). While the latter is inevitable, accuracy loss by addition can be avoided (or at 
least minimized) by using 128 bit arithmetics instead of 64 bit arithmetics, even if 
the matrix elements were calculated using 64 bit arithmetics. 

The inevitable loss in significance caused by subtraction errors can be quantified 
by calculating the absolute value of the ratio of the largest term of the summation, 
Sm~, to the result of summation R[g']. Then the number L of significant digits lost 
is at least the logarithm of this ratio: 

L~> log10 [ R___~l.Smax 

In order to estimate the loss in significancy for large basis sets, L has been calcu- 
lated for several fully linked and second order linked basis sets of the structure 
(n, n, n, n/n)n,n. Tables 6 and 7 show the results. 

Table 6 
Loss of significant digits in calculating expectation values for the energy:fully linkedbasis sets. 

n Dim R[~] L 

1 12 
2 36 
3 76 
4 152 
5 264 
6 440 

-1.058 686 435 664 81 
-1.146 163 982 256 01 
-1.169 605 199 036 09 
-1.173 816 001 147 76 
-1.174 403 573 114 74 
-1.174 469 271 176 95 

0.202 
0.872 
1.45 
2.03 
2.75 
3.67 

Table 7 
Loss of significant digits in 
sets. 

calculating expectation values for the energy: second order linked basis 

n Dim R[~] L 

1 12 
2 35 
3 74 
4 147 
5 255 
6 424 

-1.058 686 435 664 82 
-1.146 149 397 807 68 
-1.169 588 390 734 99 
-1.173 809 676 411 96 
-1.174400 601 788 33 
-1.174467 901 227 39 

0.202 
0.846 
1.664 
2.384 
3,300 
4.620 
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The extrapolation of  these results leads to the conclusion that for calculations 
with basis sets with a size of more than 1000 functions all integrals have to be calcu- 
lated with a higher precision than REAL*8 can supply. As the use of REAL*16 
arithmetics implies an enormous increase of  CPU-time due to the impossibility of  
vectorization, we had to dispense with calculations in REAL* 16. 

7.2. LOSS OF SIGNIFICANCE IN CALCULATING VARIANCES 

With the definition of  the variance 

F 2 - ( n  2 ) - -  ( n )  2 

it is obvious that a severe loss of significant digits has to be taken into account. A 
minimization of the variance directly leads to ( H  2) ~ ( H )  2. Hence the minimum 
loss of  significant digits Lmin can be specified as 

<n2> 
Lmo, = lOgl0 p.~ (26) 

In order to achieve a variance of about 10 -8 (as an example), ( H  2) and ( H )  2 
should have at least the first nine decimal digits in common because both expecta- 
tion values for H2 are in the range of  ( -1 .17)  2 ~ 1.37. At least these nine decimal 
digits are inevitably lost. Equation (26) yields a lower bound for the loss in signifi- 
cance. Furthermore it has to be taken into account that digits are lost in calculating 
the expectation values ( H  2) and ( H )  2. They can be analysed as described for the 
case of  upper bound calculations. For several second order linked basis sets of  the 
structure (n, n, n, n/n)n,, the results are shown in table 8 and fig. 1. 
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I I I 

147 255  4 2 4  

Fig. 1. Loss of significance as function of the basis size. 
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Table 8 
Loss of significant digits in calculating expectation values for the variance: second order linked basis 
sets. 

n Dim R[~P] L 

1 12 2.630 153 726 789 61E-1 0.073 
2 35 1.510 821 155 888 62E-1 1.218 
3 74 4.372 511 757 471 50E-2 2.873 
4 147 9.381 090 363 740 53E-3 4.685 
5 255 1.520 450 224 130 51E-3 6.685 
6 424 2.020 075 947 345 43E-4 9.587 

A p p e n d i x  

A. Auxiliary integrals for upper bound calculations 

For  the integral 

Vll(m,n) = fon for2r~ ~e-2C~(r~+r2) drldr2 (27) 

with 

m~>0, n~>0, 

integration by parts with respect to rl leads to a stable recursion: 

1(foRr~2+n+1e-4ar2 dr2 + 2oLV11(m +1 ,n ) )  (28) Vii(re, n) -- m +----1 

Initial values and single integrals are determined numerically with the C A D R E  

subrout ine  [22]. 

The auxiliary integral 

V13(m,n) = r~l ~e -2c~(r'+r2) drldr2 (29) 

factorizes into single integrals which are solved with the C A D R E  subrout ine  

because no stable analytic solutions can be given for n < 0. 

Solving the auxiliary integral V16, 

V16 (m, n) = rr~l~e-2,~(r,+r2) drl dr2, (30) 

three cases have to be distinguished: 

1.m~>0,n>~0 
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With [251 

4,n, e_ 
x'*e -"x dx  = e -a '  ~ k! a n-k+l ' 

we get the analytic solution 

= m! e -4aR ~ (n + k)! ~ R l (4o0 / 
Vl6(m,n) (2a)m+n+2 2,*+1 Z--, ~-.t2~- l! 

k=0 1=0 

(31) 

(32) 

2 . m < 0 a n d m  + n  + 1t>0 

With the substitution rl = xr2, drl = r2dx, eq. (30) leads to 

V16(m,n) = x~Wz +'*+le -2~(l+x)r2 dxdr2. (33) 

Changing the sequence of integration and integrating according to (31) with respect 
to rE results in 

m+n+l (m + n + 1)! R k 

g l 6 ( m ' n )  = Zk=0 k! (2or) m+n+2-k e-2aR 

f l  °° x 'n e_2~e , x (1 + x) rn+'*+E-k dx .  (34) 

The remaining single integrals are solved numerically. 

3. m < 0 a n d m  + n  + 1 <0 

Integration by parts with respect to rl leads to a stable recursion: 

Vl6(m,n) = ~ 1  2aV16(m + 1,n) - W2 +n+le-2~t2 dr2 
m + l  

with the initial values and single integrals determined numerically. 

(35) 

B. Auxi l iary integrals for error interval calculations 

B. 1. AUXILIARY INTEGRALS FOR THE INTEGRAL/2 

Designating the auxiliary integrals according to the order of appearance with 
V21,. •., V28, it can be stated: 

The integrals V25 to V2s can be solved analogously to the integrals in part A. 
The integrals V22 and V23 are identical as can be shown by changing the order 
of integration. 
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1) The integral V21 

V21(m,n) = foR foRln [ rl + r2 rl--~--~r~ 1 2 r~n, ~e-2a(rt+r~) drldr2 

can be solved by substituting 

r2 = T R ,  r 1 = tR ,  

and then 
t - - T  
~ X ~  
t + T  

resulting in 

--2T 
d t -  ( l _ x ) 2 d x ,  

l + x  
t - -  T ,  

1--X 

(/_°/ol V21 (m,  n )  ---- - 2 R  re÷n÷2 1 In Ixl (1 - x) m÷2 

/o /o .+x: } + In Ill (1 - x) m+2 Tin+ + l e - ~  dTdx 

= - -  2Rm+n+2{V211(m,n) + V212(m,r / )}  

with m + n + 1 >i 0. 
Repetitive integration by parts with respect to 7- in V211 leads to 

c¢ k 0 

V211(m,n)= ~--~(4~R)kI-[ 1 f lnlx I 
m+k=O p=u n + p + 2  1 

In analogy we get for V212 

k 1 [ 1  
V212(m,n) = ~(4c~R) k H m  + n + p + 2 

Jo k=0 p=0 
lnlxl  

and for V21 (m, n) 
o~ k 1 

V21(m,n) = - 2R re+n+2 Y~(naR) k H m  + n + p + 2 
k=0 p=0 

( f o  x ( I - - X ) m ' I ~ R  x In Ix[ (1 + X) m+k+2 e-r~ dx 

fo' (1 -x )n  - ~  } + In Ixl (1 + x) "+k+2 e ~+x dx . 

(36) 

(37) 

(1 + x) m ~R 
-- - : -Gk 2 e - ~  dx. 

(1 x) m++ 

(38) 

(1 - x )"  
(1 + X) n+k+2 

4~R 
e -  +Tgl d x  ~ 

(39) 

(40) 
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The remaining single integrals are determined numerically. 

2) The integral 

j0 f. [ rl+r  V22(m,n) = In - -  r~l~e -2~(r*+r2) drldr2 (41) 
rl - ?'2 

can be transformed into a stable recursion by substituting 

(a) rl = tR, r2 = T R ,  

(b) t = x ' r ,  dt= zdx, x =  t/T, 

changing the order of integration, and integrating by parts with respect to T, we 
receive 

R m + n + 2 { f  °° l÷Xxme-2~R(l+x ) 
V22(m,n) - - m  %- n + 2 In ~ dx 

- ~ ° ° l n ]  11 + _ ~  ~ x -n -2e  -2aR(l~) dx 

2aR } 
%- Rm+n+-------~(V22(m,n + 1) + Vz2(m + 1,n) . (42) 

Initial values and single integrals are determined numerically. 

3) The integral V24(m, n) can be solved using a similar routine as had been estab- 
lished for the solution of V22. 

Performing the same substitutions we obtain 

fR °° fR °° r, + r2 r?,~e_Z~(r,+r2) drxdr2 (43) V24(m,n)= In ~ 1 2 

coo coo I 1 _a_ X xmT.m+n+le_2aR(l+x) r = R m+"+2 I I In[ ~ dxd'r (44) 

and after interchanging the sequence of integration 

V24(m, n) = Rm+n+2( V241 (m, n) %- V242(m, n)) 

with 

(45) 

foo foo I1 + x xm:+n+le_2~R(l+x) ~ dxd~', (46) V241 (m, n) = Rm+n+2 1 In 

fol fl°° l l ÷ X xm.rm+n+le-2aR(l+x)r V242 (m,/7) = R re+n+2 In dxdr. (47) /x ~ - x  
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In the case ofm + n + 1 f>0, these double integrals can be reduced to single inte- 
grals using eq. (31). This leads to 

Rm+n+2 m+n+l (m + n + 1)! 
V 2 4 1 ( m ' " ) - - , 2 ~ + 2  Z k! 

( a ~ )  k=0 

and 

f oo 1 + x [ x m e_2aRO+x ) 
x (2aR) k In 1 - x (1 + x) m+n+2-k dx 

Rm+n+2 m~_~l (m + n + 1)! 
V242(m,n) /,~ ~.~m+n+2 ~ k! 

(ZO~/~) k=O 

(48) 

f0 1 +X I X m-k × (2aR) k In 1 - -x  (1 +x) m+n+2-ke-2~(l~) dx. 

Combining both, 

_ 1 m ~ l  (m + n + 1)! (2aR)k 
Vza(m, n) (2a) m+n+2 k=0 k! 

(49) 

 (/01nX X 4 1 - x (1 + x) m+n+2-ke-2aR(l+~) dx 

1 ] l + x  In xm-k e-2aR(X+~l) ) .  dx f + (50) 
Jo ~ (1 + x) m+"+z-k 

Therefore only one type of single integrals has to be calculated numerically. In the 
case of m + n + 1 < 0 a double recursion can be developed. Integrating both V241 
and V242 by parts with respect to r and combining the results: 

R m+"+2 ( 2~ 
VE4(m,n) - m + n + 2  / Rm+n+z (VE4(m'n+ a) + V24(m+ l,n)) 

- f o l l n [  l+x~ x-m-2e -2c~R(1-~) dx 

 011nra+xr n2 x- - e- (~ )  1 .  (51) 
, I  

Due to the symmetry of the integrals, only V24(mmax, n) are needed as starting 
values but the singularity m = - n  - 2 demands the calculation of V24(-n - 2, n) 
for all n as well. 



160 A. Miiller, H. Kleindienst / Error bounds for ground state energy 

B.2. AUXILIARY INTEGRALS FOR THE INTEGRAL/3 

1) Let V31 (m, n) be the integral 

fR~° fO r2 ]rl + RlrT~e-2~(r'+r2' drldr2. (52) V31 (m, n) = In 

Changing the sequence of integration and integrating with respect to r2 yields for 
n>~O 

~ n !  1 
V31(m,n) = k=0 k! (2a) n+l-k 

( fR [rl+R ~e-2C*r'drl x Rke-2aRjO In 

~°° rl + R r~l+ke-4~r' drl ) (53) + In ~ 

In case ofn < 0 integrating by parts with respect to rE leads to the recursion 

V31(m,n) - n+l {2aV31(m'n+l) R"+le-~R~oR Irl+R ~ e - ~ ' ~ l  -- In ~ dr1 

- f R  ° ° l n l r l + R  ~+n+le-4~r'drl}~ (54) 

The single integrals and the necessary starting values V31 (m, nmax) (for all m) have 
to be calculated numerically. 

2) The integral 
[oo [ o o  [rl + R  V32(m,n) = xn - -  r~l ~e -2~(r'+r2) drldr2 (55) 

can be reduced to single integrals by interchanging the sequence of integration 
and integrating with respect to rE: 

n! 1 
V32(m, n) = k=0 k! (2ce) n+l-k 

x {Rke-2'~R ~°°ln[ rl + R ~e-2~r' 1 -- R 

- fR°° In I rl+Rrl-~ I ~1 +k+le-4art } .-7--~1 dr1 • (56) 
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In case ofm < 0 this solution causes numerical instabilities due to the subtraction 
procedure. In this case, the recursion 

l {fR~ln[rl-t-R[r~1+n+le-4C*r~dr 1 V32 (m, n) - n + 1 

°° ]rl + R r~l } --R"+le-2'~RjRf In drl+2aV32(m,n+l) (57) 

can be used. 

3) For the integral 

V33 (m, n) = for for2 In rlrl+R[ r'~l~e-2c~(rt+r2)- R drldr2 , (58) 

the preceding routine cannot be applied. In this case only the recursion 

1 { foR[rl+Rrmle_2ar,  V33(m,n) =n + 1 Rn+le-2aR In ~ drl 

- I n  

can be applied, because integration with respect to rz leads to numerical instabilities 
due to subtraction errors. 

4) The integral V34 

fOR f2 ~ rl + R rT~e-2a(r'+r2) V34(m,n) = In rl _ R drldr2 (60) 

decomposes into two terms after interchanging the sequence of integration: 

V34(m,n) = V341(m,n) + V342(m,n) 

with 

and 

foRfo r', I r l + R [  V341(m,n) = m [ r-~L-~_ R I ~e-a~(r'+r~)drldr2 

Io V342(m,F/)--~ ?~2 e-2Otr2 dr2 In ~ 

(61) 

(62) 
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V342 factorizes, while for V341 a stable recursion can be derived: 

1 
V341(m,n) -- - -  

n + l  

with m + n + 1 >/0. 

{ f 0 n l n  I rl + R  r-'--l ~_ R I r~l +n+l e-4ar~ drl -t- 2c~ V341(m, n -k-1) } 

(63) 

5) Similarly the integral V35(m, n) decomposes into two terms, one of which 
(V351) factorizes, while the other can be solved analytically for n t> 0 and recursively 
fo rn<0 :  

V35(m,n) = r~14e -2a(r'+r2) drldr2 (64) 

/;f? = R e-2 (r'÷r21 dr2drl + dr2drl 

= V351 (m, n) + V352(m, n). (65) 

Solving the integral VaSE tWO cases have to be distinguished: 

(a) n I> 0. Using eq. (31) leads to the analytical solution 

V35a(m,n) = n!e-4~R n'Y-" (m + k)! ).£ (4c~R)1 (66) 
2kk! l! (2c~) m+n+22m+l k=0 I--0 

(b) n < 0. Integration by parts with respect to ra leads to an instable recursion 
for 11352. A stable recursion can be derived by integrating V35 by parts with respect 
to rl: 

{ /; } V35(m,n) _ _ _ 1  2c~Vas(m,n + 1) + rr'~E+n+le -4~r2 dr2 . (67) 
m + l  

6) The integrals V36 and V37 are identical with V16 and Vll. 

7) The integral 

g38(m,n)  = ~1~2 e-2r~(rl+r2) drldr2 (6g) 

can be reduced to a sum of single integrals for m f> 0: 

V38(m,n) = m, ~ (2c~) k fOR~+ke_4~r2 dr2. (69) 
(2Ce) m+l k=0 k! 

Ifrn < 0, integration by parts with respect to rl leads to a stable recursion: 
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{ /o R ) 1 2aV38(m + 1,n) - ~+"+le-4~r2 dr2 . (70) //'38 ( m ,  n )  - -  m +------1 

Computing the starting values it proved to be profitable to perform the numerical 
integrations on the following integral, which can be derived by substituting 
r 1 ~ xr2: 

V38 (m, n) = xmr12n2 +n+l  e -2a(l+x)r~ dxdr2 (71) 

: foR fol x-m-2r~2+n+l e-2C~(l~)r2 dxdr2 . (72) 

Otherwise, the domain of integration would be too large, which causes serious con- 
vergence problems. 

B.3. AUXILIARY INTEGRALS FOR THE INTEGRAL I41 

Let the double integrals be denoted with V41 and V42 according to their order of 
appearance. 

Thus the former integral can be solved recursively after applying the already 
familiar techniques - substituting rl = xr2, interchanging the sequence of integra- 
tion and integrating by parts with respect to r2: 

V41(m'n)= fo °° f e ln  Jo Irlrl+r2l~e-2~(r '+r2) d r 2 d r l -  r2 

= Jo f '  Jo [ ° ° l n  Irl r l  -~r21~r~2e-2C~(rl+r2)--r2 drldr2 (73) 

= f0ef0 °° In 1-xl+Xlxm~+n+le-2~(l+x)r2dxdr2 (74) 

__ f0°°ln [ l + x  I f  (75) 

[ ;i, x 
1 ~+"+2e-2~ In 1 - x dx m + n + 2  

q- 2o~6(V41(m q- 1,n) -4- V41(m,n+ 1))1 

i 

(76) 
- I  

within>0,  andn>0 .  
At this point the reason for the restriction of the parameter e can be understood. 

The domain of the single integral in eq. (77) stretches from 0 to cx~. The integral is 
finite, as the powers of x are compensated by the exponential-function. Now the 
smaller we choose e the worse is the convergence of the exponential function. For 
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constant x the functional value increases for decreasing values of e. This is a crucial 
point in the numerical computation of the integrals, because functional values 
have to be calculated explicitly. Increase beyond the largest internally producible 
number (REAL*8: z,,,ax , ' ~  10309), yields a run time error and the integral cannot be 
computed. 

The second double integral factorizes: 

V42(m, n) = ~ e  -2~(''+r2) drzdrl (77) 

/0 ' 
_ m! ~e_2C~r2dr2 (78) 

(2~) m+l 

wi thm>0 ,  andn >0. 

B.4. AUXILIARY INTEGRALS FOR THE INTEGRAL I42 

Let the double integrals be denoted as V51 to V54. 
The integral V51 can neither be solved analytically nor by recursion, because 

due to the logarithmic terms integration by parts induces new types of integrals. As 
only a few integrals of this type are necessary (about 2000), they are computated 
numerically. An efficient numerical computation requires several substitutions as 
well as intersections of the domain of integration: 

V~l(m,.)= fo~ f°°ln r ,q- r2[1  n r 2 q - R  rl -- r2 r-~---~_ R [ r~l ~e-2~(rl+r2) dr2drl (79) 

oo oo 1 + x r2 + R --/o f 1o (80) 

V s l ( m , ~ )  = 

+I'F,ol ly+  1 
In I ~---~ ~-;sY"+"+le-2'~0~)YdY dx  (82) 
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1 fRln 1 +x y + R  +fo J~ [1----L-~ In f-S--~] ~ 1  ym+n+le_2~(l+~)Ydydx 

fo'fo ~ [ l + x  I~+R IT___g. 1 In Xmym+n+3 e-~'(l+x)/y dydx + In ~ ; - R  

folfo-~ ] l + x  ~+R in ~ 1 1 e -2~(1~)/y dydx. (83) + In ~ ; -  xm+2 y,.+.+3 

For the integral V53 substituting rl = xr2 and interchanging the sequence of inte- 
gration leads to the recursion 

V53(m,n) = fo ~ ~°°ln r e + r 2  ~l ~2e_2OL(r,+r,) dr2drl (84) 
r 1 -- r 2 

= In ~ 

_ 1 28(V53(m,n+ 1 + V53(m+ 1,n)) 
m + n + 2  

g"+"+2e-2~' f ~  In 1 + x xme_2,~ x dx] (86) 
Jo I 1 - x  J 

with 
m + n + 2 > 0 .  

The integrals V52 and V54 factorize: 

fo~ ~ °° I r2 + R I r~l ~e-2C~(rl+r2) dr2drl (87) V52(m,n) = In 

m' f rr +" I 
- In ~e -2~2 dr2 (88) m+l 

withm>0andn>0; 

V54(m, n) = r~l~e -2a(r'+r2) dr2drl (89) 

_ m! ~e -28r2 dr2 (90) 
(20~) m+l 

with m > 0, and n > 0. 
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